RDD Transformation?

  • 간단히 설명하자면, 결과 값, 즉 return이 RDD로 반환되는 연산이다.
  • RDD들은 지속적으로 기록만 하다가, RDD Action을 수행할 때 연쇄적으로 수행된다.
    • lazy evaluation이다.

사용 변수들

val numericRDD     = sc.parallelize(1 to 4, 3)  
val characterRDD   = sc.parallelize(Seq("good,bad", "good,bad", "best,worst", "plus,minus"), 3)  
val characterRDD2  = sc.parallelize(Seq("good,bad", "good,bad", "plus,minus"), 3)  
val pairRDD        = characterRDD.zipWithIndex.map {case (key, value) => (key, value + 2) }  
val pairRDD2       = characterRDD.zipWithIndex.map {case (key, value) => (key, value + 10) }  
val pairRDD3       = characterRDD.zipWithIndex.map {case (key, value) => (value + 1, key) }  
val numericPairRDD = sc.parallelize(for (i <- 1 to 10) yield (scala.util.Random.nextInt(1000), "-"))
  • 기본적으로 위와 같이 RDD생성을 함

Map

Map

/*map*/
println(characterRDD.map(_.split(",")).collect().map(_.mkString("{", ",", "}")).mkString("(", ",", ")"))  
//  ({good,bad},{best,worst},{plus,minus})

/*mapValues*/
println(pairRDD.mapValues(num => num + 1).collect().mkString(", "))  
// (good,bad,3), (good,bad,4), (best,worst,5), (plus,minus,6)
  • map 실행 순서
    1. characterRDD.map(_.split(","))
      1. “good,bad”, “good,bad”, “best,worst”, “plus,minus” 를 “,” 로 분할
      2. seq((“good”,“bad”), (“good”,“bad”), (“best”,“worst”), (“plus”,“minus”))
    2. map(_.mkString("{", ",", "}")) 를 이용하여 문자열생성
      1. seq({“good”,“bad”}, {“good”,“bad”}, {“best”,“worst”}, {“plus”,“minus”})
    3. .mkString("(", ",", ")"))를 이용하여 최종 출력 모양 생성
      1. ({“good”,“bad”}, {“good”,“bad”}, {“best”,“worst”}, {“plus”,“minus”})
  • mapValues
    • Map과 동일하게 처리하는데, Value의 값을 조작하고 싶을 때 사용.
    • 위 코드는 각 value에 1을 더하는 연산이다

Flatmap

Monad 개념인데, 이것은 추후 공부할 예정

/*flatMap*/
println(characterRDD.flatMap(_.split(",")).collect().mkString("(", ",", ")"))  
//  (good,bad,best,worst,plus,minus)  

/*flatMapValues*/
val pairRDD3 = characterRDD.zipWithIndex.map {case (key, value) => (value + 1, key) }  
println(pairRDD2.flatMapValues(_.split(",")).collect().mkString(", "))  
// (1,good), (1,bad), (2,good), (2,bad), (3,best), (3,worst), (4,plus), (4,minus)
  • flatmap 실행 순서
    1. characterRDD.flatMap(_.split(","))
      1. 모든 값들을 풀어서 ","로 분할
      2. seq(“good”,“bad”,“good”,“bad”,“best”,“worst”,“plus”,“minus”)
    2. .mkString("(", ",", ")"))를 이용하여 최종 출력 모양 생성
      1. (“good”,“bad”,“good”,“bad”,“best”,“worst”,“plus”,“minus”)
  • flatMapValues
    • flatMap과 동일하게 처리하는데, Value의 값을 조작하고 싶을 때 사용.
    • key를 기준으로 value를 나누는 연산
      • Seq(1,“good,bad”), (2,“good,bad”), (3,“best,worst”), (4,“plus,minus”) 를
      • (1,good), (1,bad), (2,good), (2,bad), (3,best), (3,worst), (4,plus), (4,minus)로 변환

mapPartitions

println(  
  numericRDD.mapPartitions(nums => {  
	println("MapPartition loop")  
	nums.map(num => num * 2)  
  }).collect().mkString(", ")  
  )  
// MapPartition loop
// MapPartition loop
// MapPartition loop
// mapPartitions
// 2, 4, 6, 8

// 짝수만 출력
println(  
  numericRDD.mapPartitionsWithIndex((idx, nums) => {  
	println("mapPartitionsWithIndex loop")  
	nums.flatMap {  
	  case num if idx % 2 == 0 => Option(num * 2)  
	  case _                   => None  
	}  
  }).collect().mkString(", ")  
  )  
// mapPartitionsWithIndex loop
// mapPartitionsWithIndex loop
// mapPartitionsWithIndex loop
// 2, 6, 8
  • Partition를 기준으로 Map을 수행함
    • 3개의 Partition이 존재하면 3번 순회한다.
  • mapPartitions vs mapPartitionsWithIndex
    • 간단히 말하면 둘다 Partition 기준으로 순회한다
    • 차이점 : mapPartitionsWithIndex은 각 Row에 Index를 붙여서 반환한다.

Group

Zip

println(characterRDD.zip(numericRDD).collect().mkString("(", ",", ")"))  
//   ((good,bad,1),(good,bad,2),(best,worst,3),(plus,minus,4))  
  
println(characterRDD.zipPartitions(numericRDD, numericRDD) {  
  (key, num, num2) => for {  
    key_result <- key  
    num_result <- num  
    num_result2 <- num2.map(_ + 1)  
  } yield (key_result, num_result, num_result2)  
}.collect().mkString("(", ",", ")"))  
//  ((good,bad,1,2),(good,bad,2,3),(best,worst,3,4),(best,worst,3,5))  
  • zip
    • 2개의 RDD를 Key : value 로 묶어줌
    • 1 : 1 로 같은 인덱스 위치에 있는 것끼리 묶이기 때문에 길이가 및 파티션 수가 동일해야 함
  • zipPartitions
    • Partition을 요소로 사용하여 새로운 파티션을 생성
    • spark 2.4에서는 인자로 RDD 4개까지 가능
    • Partition 수가 동일해야함
numericRDD.groupBy {  
  case num: Int if num % 2 == 0 => "even"  
  case _                        => "odd"  
}.collect() foreach {  
  row => println(s"${row._1}, [${row._2.mkString(",")}]")  
}  
//      even, [2,4]  
//      odd, [1,3]  
  
pairRDD.groupByKey().collect() foreach {  
  row => println(s"${row._1}, [${row._2.mkString(",")}]")  
}  
//    best,worst, [3]  
//    good,bad, [1,2]  
//    plus,minus, [4]  
  
val rdd1   = sc.parallelize(Seq(("apple", 100), ("banana", 500), ("apple", 200)))  
val rdd2   = sc.parallelize(Seq(("banana", 400), ("apple", 300)))  
val result = rdd1.cogroup(rdd2)  
result.collect.foreach {  
  case (k, (rdd1_val, rdd2_val)) =>  
    println(s"($k, [${rdd1_val.mkString(",")}], [${rdd2_val.mkString(",")}])")  
}  
//    (apple, [100,200], [300])  
//    (banana, [500], [400])
  • groupBy
    • 조건에 의한 Grouping
  • groupByKey
    • Key값을 기준으로 grouping
  • cogroup
    • Key를 기준으로 각 RDD에 값을 묶음
    • key , rdd1의 values, rdd2의 values

Set

Distinct

println(  
  s"""distinct  
     |${characterRDD.distinct.collect.mkString(", ")}  
     |""".stripMargin  
  )  
//    best,worst, good,bad, plus,minus  
  • 이름 그대로 중복을 제거하는 역할

cartesian

println(  
  s"""cartesian  
     |${characterRDD.cartesian(numericRDD).collect.mkString(", ")}  
     |""".stripMargin  
  )  
//    (good,bad,1), (good,bad,2), (good,bad,3), (good,bad,4),(good,bad,1), (good,bad,2), (good,bad,3), (good,bad,4),(best,worst,1), (plus,minus,1), (best,worst,2), (plus,minus,2), (best,worst,3), (best,worst,4), (plus,minus,3), (plus,minus,4)  
  • 카르테시안 곱
  • 모든 경우의 수를 조합하는 것이라고 보면된다.
  • Sql에서 Join 조건을 주지 않은 경우, Cross Join

subtract

println(  
  s"""subtract  
     |${characterRDD.subtract(characterRDD2).collect.mkString(", ")}  
     |""".stripMargin  
  )  
//    best,worst  
  • rdd1에 존재하지만, rdd2에 존재하지 않은 값들을 RDD로 생성하여 반환
  • 예시
    • characterRDD : "good,bad", "good,bad", "best,worst", "plus,minus"
    • characterRDD2 : "good,bad", "good,bad", "plus,minus"
    • characterRDD에 “best,worst” 가 존재하지만 characterRDD2 에는 존재하지 않음
      • best,worst 반환

Union

println(  
  s"""union  
     |${characterRDD.union(characterRDD2).collect.mkString(", ")}  
     |""".stripMargin  
  )  
//    good,bad, good,bad, best,worst, plus,minus, good,bad, good,bad, plus,minus  
  • 2개의 RDD를 병합하는 것
  • 자료형이 동일해야함

intersection

// 교집합을 구하는것  
println(  
  s"""intersection  
     |${characterRDD.intersection(characterRDD2).collect.mkString(", ")}  
     |""".stripMargin  
  )  
//    good,bad, plus,minus 

Join

println(  
  s"""join  
     |${pairRDD.join(pairRDD2).collect.mkString(", ")}  
     |""".stripMargin  
  )  
//(best,worst,(3,12)), (good,bad,(1,10)), (good,bad,(1,11)), (good,bad,(2,10)), (good,bad,(2,11)), (plus,minus,(4,13))  
  

println(  
  s"""leftOuterJoin  
     |${pairRDD.leftOuterJoin(pairRDD2).collect.mkString(", ")}  
     |""".stripMargin  
  )  
// (best,worst,(3,Some(12))), (good,bad,(1,Some(10))), (good,bad,(1,Some(11))), (good,bad,(2,Some(10))), (good,bad,(2,Some(11))), (plus,minus,(4,Some(13)))  
  

println(  
  s"""leftOuterJoin  
     |${pairRDD.subtractByKey(pairRDD2).collect.mkString(", ")}  
     |""".stripMargin  
  )  
//(best,worst,3)
  • Join
    • Key값을 기준으로 Join연산
    • (key , (rdd01 value, rdd2 value)) 조합으로 모든 값 Join
  • leftOuterJoin / rightOuterJoin
    • left join 연산을 한다. join결과값이 없을 수 있음으로 Option 타입으로 반환한다.
  • subtractByKey
    • rdd01.subtractByKey(rdd2)
    • rdd01가 rdd2에 없는 key만 추출

Aggregate

reduceByKey / foldByKey

    println(  
      s"""reduceByKey  
         |${pairRDD.reduceByKey(_ * _).collect().mkString(", ")}  
         |""".stripMargin  
      )  
    // (best,worst,4), (good,bad,6), (plus,minus,5)  

    println(  
      s"""foldByKey  
         |${pairRDD.foldByKey(1)(_ * _).collect().mkString(", ")}  
         |""".stripMargin  
      )  
    // (best,worst,4), (good,bad,6), (plus,minus,5)  
  • reduceByKey
    • Key값을 기준으로 value에 주어진 연산 수행
    • 기본 값이 존재하지 않기 때문에 교환 법칙 및 결합 법칙을 만족해야한다.
      • 교환 법칙 : 상수의 위치가 변경돼도 가능한 것.
        • 1 + 2 == 2 + 1 ( OK )
        • 1 / 2 != 2 / 1 ( X )
      • 결합 법칙 : 연산의 순서가 변경돼도 가능한 것.
        • 간단히 말하면 임의로 괄호로 묶어 연산해도 동일한 결과
        • 1 + 2 + 3 == 1 + (2 + 3) ( OK )
        • 1 + 2 * 2 != ( 1 + 2 ) * 2 ( X )
    • 위 결과 도출 방법
      • best,worst : 4
      • good,bad : 2 * 3
      • plus,minus : 5
        foldByKey
    • Key값 기준으로 Value연산
    • reducebykey와 동일하지만, 차이점은 기본 값이 있는 것이다.
    • 위 결과 도출 방법
      • best,worst : 1 * 4
      • good,bad : 1 * 2 * 3
      • plus,minus : 1 * 5
종류 교환법칙 결합법칙 초기값
reduceByKey o o x
foldByKey x o o

combineByKey / aggregateByKey

case class Fruit(var price: Long, var amount: Long = 1) {  
  def add(p: Long): Fruit = {  
	add(Fruit(p))  
  }  
  def add(other: Fruit): Fruit = {  
	this.price += other.price  
	this.amount += other.amount  
	this  
  }  
}  

val fruit_rdd = sc.parallelize(Seq(("Apple", 1000L), ("banana", 2000L), ("Apple", 1500L), ("banana", 2600L), ("banana", 1300L), ("Apple", 3000L)))  
println(  
  s"""combineByKey  
	 |${  
	fruit_rdd.combineByKey(  
	  createCombiner = (p: Long) => Fruit(p)  
	  , mergeValue = (f: Fruit, v: Long) => f.add(v)  
	  , mergeCombiners = (f1: Fruit, f2: Fruit) => f1.add(f2)  
	  ).collect().mkString(", ")  
  }  
	 |""".stripMargin  
  )
println(  
  s"""combineByKey  
	 |${  
	fruit_rdd.aggregateByKey(Fruit(3000, 0))(  
	  (f: Fruit, v: Long) => f.add(v)  
	  , (f1: Fruit, f2: Fruit) => f1.add(f2)  
	  ).collect().mkString(", ")  
  }  
	 |""".stripMargin  
  )  
  • combineByKey
    • 새로운 타입으로 반환 가능하게 만듦
    • 아래 예시를 통해 Fruit 이라는 Case Class로 반환하는 예시
    • createCombiner
      • 연산을 위해 컴파이너를 생성하는 것.
      • 개인적으로 이해한 바는 타입 변경하여 초기 값을 생성하는 작업
    • mergeValue
      • Combiner가 존재하면 추후 실행할 연산, 이 연산을 통해 값이 누적되어 쌓인다
      • 동을한 key를 가진 값들을 병합
    • mergeCombiners
      • 병합이 끝난 Combiner들을 최종적으로 병합한 Combiner를 생성
      • 다른 Partition에 존재하는 결과 값을 병합
    • 조금 더 알아봐야겠다.
    • 위 예시 결과 값 도출 사유
      • 결과 값 : (banana,Fruit(5900,3)), (Apple,Fruit(5500,3))
      • banana : 2000L + 2600L + 1300L , count = 3
      • Apple : 1000L + 1500L + 3000L , count = 3
  • aggregateByKey
    • 초기값이 존재하는 combineByKey
      • 즉 createCombiner를 생성 후 수행하는 CombineByKey
    • 위 예시 결과 값 도출 사유
      • 결과 값 : (banana,Fruit(14900,3)), (Apple,Fruit(14500,3))
      • banana : (3000 + 2000L) + (3000 + 2600L) +(3000 + 1300L) , count = 3
      • Apple : (3000 + 1000L) + (3000 + 1500L) +(3000 + 3000L) , count = 3

Pipe

println(  
  s"""pipe
	 |${characterRDD.pipe("cut -d , -f 2").collect().mkString(", ")}
	 |""".stripMargin      )
// bad, bad, worst, minus  
  • 결과 값을 bshell 등 외부 프로세스의 인자 값으로 실행시킴

값추출

println(  
  s"""  
	 |keys : ${numericPairRDD.keys.collect.mkString(", ")}  
	 |value: ${numericPairRDD.values.collect.mkString(", ")}  
	 |""".stripMargin  
)  
//    keys : 776, 377, 559, 275, 818, 457, 173, 248, 135, 679  
//    value: -, -, -, -, -, -, -, -, -, -  
println(  
  s"""  
	 |중복 불가 : ${numericPairRDD.sample(withReplacement = false,fraction = 0.7).collect.mkString(", ")}  
	 |중복 허용 : ${numericPairRDD.sample(withReplacement = true,fraction = 0.7).collect.mkString(", ")}  
	 |""".stripMargin  
)  
//    중복 불가 (306,-), (376,-), (630,-), (417,-), (439,-), (738,-), (691,-), (435,-)
//    중복 허용 (210,-), (376,-), (630,-), (417,-), (417,-), (439,-), (435,-)
  • keys
    • key값 반환
  • values
    • value값을 반환
  • sample
    • 데이터 샘플링.
      • withReplacement : 데이터 중복 가능 여부
      • fraction : 전체 중 n% 추출 (0 ~ 1 사이 값)

filter

// 이름 그대로 filter조건에 부합하는 것을 걸러줌  
println(  
  s"""filter  
	 |${numericRDD.filter(_ > 2).collect.mkString(", ")}  
	 |""".stripMargin)  
// 3, 4  
// 1,2,3,4 중 3,4만 출력  
  • 값 필터링
    • SQL의 WHERE절이라고 생각하면 편하다

SortByKey

// Key값을 기준으로 정렬시켜줌  
println(  
  s"""sortByKey  
	 |${numericPairRDD.sortByKey().collect.mkString(", ")}  
	 |""".stripMargin  
)  
// (135, -), (173, -), (248, -), (275, -), (377, -), (457, -), (559, -), (679, -), (776, -), (818, -)  
  • Key값을 기준으로 정렬

Partition / Coalesce

println(  
  s"""repartition  
	 |default = ${characterRDD.getNumPartitions}  
	 |coalesce = ${characterRDD.coalesce(1).getNumPartitions}  
	 |repartition = ${characterRDD.repartition(5).getNumPartitions}  
	 |""".stripMargin  
	 // default = 3
     // coalesce = 1
     // repartition = 5
  )  
  • Partition 수를 증감시킴
    • repartition 는 Shuffle이 발생하면서 partition 재분배
      • Shuffle이 발생하지 않아 Network 통신을 하여 상대적으로 느리다
        • 데이터의 Parition 분배가 될 수 있다.
      • partition 수 증감 모두 가능
    • coalesce 는 shuffle이 발생하지 않고 partition 재분배
      • Shuffle이 발생하지 않아 Network 통신을 하지 않아 상대적으로 빠르다
        • 데이터의 Parition 분배는 일어나지 않는다
        • 간단히 생각하면 동일 Node에 있는 Partition들을 Union 한다고 생각하면 편하다
      • partition 수 감소만 가능

partitionBy / repartitionAndSortWithinPartitions

numericPairRDD.partitionBy(new HashPartitioner(3))  
			  .foreachPartition(it => {  
				println(s"-------")  
				it.foreach(v => println(v))  
			  })  
 
numericPairRDD.repartitionAndSortWithinPartitions(new HashPartitioner(3))  
			  .foreachPartition(it => {  
				println(s"==========")  
				it.foreach(v => println(v))  
			  })  
  • 공통
    • RDD를 N+1개의 Partition으로 특정 기준(Partitioner)에 따라 분배 해준다
      • Partitioner : Partition을 나누는 역할을 하는 객체
        • HASH Partitioner
          • Hash값을 이용하여 분할
        • RANGE Partitioner
          • 범위 혹은 순서로 분할
    • (key - value)로 구성되어 있어야 한다.
      • key 값을 기준으로 분리한다
    • 지정한 Partitioner를 기준으로 분배하기 때문에, Skew현상이 발생할 수 있다.
      • Skew : 데이터 쏠림 현상
      • 위 예시를 실행할 때 아래와 같이 데이터 Skew현상이 발생할 수 있다.
partition partitionBy repartitionAndSortWithinPartitions
partition 3 (89,-) (150,-)
partition 3 (780,-) (89,-)
partition 3 (622,-) (175,-)
partition 3 (548,-) (134,-)
partition 3 (150,-) (530,-)
partition 3 (646,-) (548,-)
partition 3 (134,-) (780,-)
partition 3 (175,-) (622,-)
partition 3 (966,-) (966,-)
partition 3 (530,-) (646,-)

[ Reference ]


개인적으로 공부한 내용 포스팅 중
잘못된 정보는 지적해주시면 좋겠습니다!

'프로그래밍 및 IT > Spark' 카테고리의 다른 글

spark-scheduling  (0) 2023.11.28
WordCount  (0) 2023.10.13
RDD Action  (0) 2023.10.13
Spark_RDD  (0) 2023.10.05
Spark  (0) 2023.10.04

RDD?

  • Resilient Distributed Dataset 의 약자로써 Spark의 최초에 도입된 데이터 구조
    1. Resilient ( 회복력 있는, 불변의)
      1. 메모리 내 데이터가 손실되도 복구 가능 하고, 생성된 데이터는 불변이다.
      2. 복구는 데이터를 저장하는 것이 아닌 새로 만들어 복구한다
    2. Distributed (분산된)
      1. Spark Cluster를 통해 메모리에 분산되어 있음
    3. Dataset
      1. 데이터
    • 데이터는 여러 서버에 분산되어 저장되고, 처리할 때 동시에 병렬로 처리가능하고 일부 서버에서 장애 발생시 복구가 가능하다.
      • 데이터 요소가 모인 집합
      • 스파크 클러스터에 나눠져 저장됨

Partition

  • RDD는 Partition 단위로 처리가 이루어 진다.
    • Partition단위로 스파크 클러스터에 분산 관리됨
    • Hadoop의 FS인 HDFS를 사용하면 1 Block = 1 Partition으로 구성된다
      • 기본값이 저렇게 되고, Spark API를 이용하여 Partition 수는 조정할 수 있다.
    • Partition 크기,개수에 따라 성능에 영향을 준다.
    • 처리중 Partition 재구성 혹은 Network를 통해 다른서버로 이동되는 Shuffle이 발생할 수 있다
      • Shuffle이 많이 발생하면 성능 저하를 야기할 수 있어 주의해야 한다.
      • Partition 수를 직접 지정할 수 있어 적절히 설정하는 것을 권장

Operation

Spark는 기본적으로 Lazy evaluation으로 처리된다.
RDD는 기본적으로 2개의 큰 연산으로 구분된다.

Lazy evaluation

  • Spark는 기본적으로 지연 구동이 된다.
    • 최척화를 해주는 장점이 있지만, 잘못하면 원치 않게 동작할 수 있어 잘 고민하고 구현해야한다.
  • 최적화 ?
    • Lazy로 동작하여 이미 동작해야 할 것을 알고 있기에 최적화된 방식으로 동작한다
    • Pasted image 20231006111119.png
      • 위 그림처럼 프로그래머가 최적화 하지 않고 수행한다면 A처럼 순서에 따라 동작할 것이다
      • 하지만 Lazy하게 동작하여 자동으로 최적화 된다면 B처럼 동작할 수 있다

Transformation

  • 기존의 RDD를 새로운 RDD로 생성하는 것.
    • 이름 그대로 RDD에 변형이 발생하는 것.
      • e.g) Filter , Join …
  • Transformation은 Action Function이 호출되기 전까지는 Lineage만 생성하고 쌓아둔다
  • Return 값은 RDD 이다
    • RDD01를 이용하여 RDD02를 생성하는 것.
  • Transformation은 2개로 구분된다
    • Pasted image 20231004161104.png
    1. narrow dependency
      • 위 그림과 같이 단순히 더하는 것 과 같이 Partition 이동이 없고, Shuffle이 발생하지 않는 상황
      • 즉 다른 Partition에 존재하는 데이터를 알 필요 없는 연산
        • e.g val rdd2 = rdd2.map(case (key,value) => (key,value +1))
    2. wide dependency
      • 위 그림과 같이 단순히 더하는 것 과 같이 Partition 이동이 있거나 , Shuffle이 발생하는 상황
      • 즉 서로 다른 Partition에 존재하는 데이터를 참조해야 하는 연
        • e.g val rdd3 = rdd2.reduceByKey(_ + _ )

Action

  • 실질적으로 연산을 하는 연산자
    • 즉 , return 값이 데이터 혹은 실행 결과인 것
    • Lazy evaluation에 따라 Action Function이 호출 될 때 연산을 시작한다.
      • 한번에 실행시키기 때문에 최적화된 방법으로 처리할 수 있다.
    • collect(), count() 등이 있다.

Lineage

  • Resilient를 만족 시킬때 RDD는 실질적인 데이터를 저장하는 것이 아니라, 작업 내용을 기억하고 있는 것이다.
  • 이러한 작업 과정 읽기 전용 모델로 만든 것을 Lineage라고 부른다.
  • Lineage는 Dag의 형태로 구성되어있다.

Dag

Directed Acyclic Graph 즉 방향성을 가진 그래프
Pasted image 20231004160214.png

  • 노드간 순환이 없고, 순서가 중요하다.
  • 만약 D에서 장애가 발생하면 B부터 다시 처리하면 되기 때문에 Resilient를 만족시킨다
    • 이러한 특성으로 Spark RDD는 Fault-tolerant를 보장한다.
  • Spark는 Stage로 나누어서 처리되고 Task단위로 연산한다
    • Task는 작업 단위, Task를 묶어 한번에 병렬 처리되는 것을 Job이라고 부른다.
    • E.g위 그림을 보면 Stage 1에는 B와 D의 Task 2개가 존재한다

[ Reference ]


개인적으로 공부한 내용 포스팅 중
잘못된 정보는 지적해주시면 좋겠습니다!

'프로그래밍 및 IT > Spark' 카테고리의 다른 글

spark-scheduling  (0) 2023.11.28
WordCount  (0) 2023.10.13
RDD Action  (0) 2023.10.13
RDD Transformation  (0) 2023.10.13
Spark  (0) 2023.10.04

+ Recent posts